
International Journal of Scientific & Engineering Research, Volume 9, Issue 2, February-2018
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

High Performance Kafka Powered Scalable Real
Time Rule Engine Model for Event Stream

Processing
P Murali Krishna, Pallav Kumar Baruah

Abstract— Rule based systems execute actions based on the predefined rules. These systems are widely used in business, government
and organizations. Traditional rule based systems perform poorly in big data applications such as IoT and others. In order to meet this
challenge, we exploit the inherent nature of the problem to come up with a distributed processing system. We propose a scalable real
time rule based engine model to logically distribute the events/data streams generated and apply inference on each logically separated
event stream.

Index Terms— Apache Kafka, Big data, Drools, IOT, Kafka Streams, Rule Engine, Stream Processing.

—————————— Æ ——————————

1 INTRODUCTION

Rule engines (or Production system) provides the good way of
representing knowledge and reasoning. Rule engine consists
of three main components Knowledge base, Working memory
and Inference engine. Inference engine is the brain of the Rule
engine, it uses some pattern matcher and repeatedly tries to
find the rule base that could match with the facts and execute
the desired actions. Rule engines are computationally
expensive and slow. When the size of the problem continues
to grow it will perform poorly.

In the context of IOT, embedded systems like patient health
monitoring devices, traffic control devices, temperature
control devices etc, produce a large amount of data. These
data should be processed in real time and the processing
system should be able to handle the large data generated.
Traditional Rule based systems cannot process the large data
on the single system because of memory and processing
power limitations. In order to address this issue, we have
proposed a Scalable Real Time Rule Engine Model.

P Murali Krishna is currently pursuing masters degree in Computer
Science in Department of Mathematics and Computer Science in Sri
Sathya Sai Institute of Higher Learning, Puttaparthi, India.
PH: +91 9490844978, Email: muralikrishna.mdh@gmail.com.

Pallav Kumar Baruah, Head of Department, Department of
Mathematics and Computer Science in Sri Sathya Sai Institute of
Higher Learning, Puttaparthi, India.

PH: +91 9440699887, Email: pkbaruah@sssihl.edu.in.

In our model we exploit the inherent data parallel nature of
the problem. In our approach we scale up rule engine
performance by distributing incoming data streams using
Apache Kafka and applying inference algorithms
independently on data stream. But this leaves the constraint in
cases like parcel tracking, patient health monitoring, traffic
flow monitoring etc,. where, related data needs to be
processed by the same rule engine to maintain its state and
avoid inconsistency. In the case of patient health monitoring
system, data about a specific person should reach a fixed rule
engine in order to infer knowledge about the person. To tackle
this problem, we have chosen key based approach. Our
approach requires that the data generated should always have
the uniqueness associated with it in the form of key. But, this
requirement is inherently met in use cases like those
mentioned above. For example, in the context of patient health
monitoring system we have the Patient-ID as the key.

Our idea is to build a general model using the big data tool
Apache Kafka, in integration with Drools rule engine [1] to
handle the above mentioned requirements. We have chosen
drools to be the underlying rule engine because of its wide
community support and usage in many areas like network
fault management [2], intrusion detection system [3] and
other.

2 RELATED WORK

Rete by Forgy [4] is a pattern matching algorithm and is one of
the main contributions. Inspired by this there are other
improvements and modifications like Treat [5], Rete/UL [6],
Rete [7],[8]. But all these improvements have not addressed
the problem of processing a large number of rules and facts on

1,831

IJSER

International Journal of Scientific & Engineering Research, Volume 9, Issue 2, February-2018
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

a single system because of memory and processing power
limitations. These methods keep rules and facts in memory to
process them. With the increase in data size and the number of
rules, the performance of the system deteriorates. So these
methods are not directly applicable for big data environments.
To address this issue, author has proposed[9] a message
passing model to deal with big data.

In this paper, we propose a scalable real time rule engine
model to logically distribute the events/data streams
generated and to apply inference on each logically separated
event stream. We have used apache kafka for logically
distributing the data and apache drools for inference on each
processing node. Finally, we implement our model with a
bank transaction case study and show its scalability and
performance through experimentation.

This paper is organized as follows. Section 3 provides the
background information of Apache Kafka, Rule Engine and
Kafka Streams used in our model. Section 4 describes the
architecture and the components used in our model. Section 5
describes the details of implementation. Section 6 describes the
detailed implementation of our model with a case-study.
Section 7 is about the various experiments conducted to show
the scalability of our model. We conclude by mentioning
possible future works in Section 8.

3 BACKGROUND

3.1 Apache Kafka
Apache Kafka[10][11] is a publish-subscribe messaging
system. It is horizontally scalable and fault-tolerant. Kafka
cluster consists of multiple brokers(servers). Each broker is
identified with an id. Each broker contains certain topic
partitions. Fig. 1, shows the kafka with 3 brokers having topic-
1 with 3 partitions, topic-2 with 2 partitions and topic-3 with 1
partition.

Fig. 1. Brokers configured with different Topics and Partitions.

Producers are the processes which publish data to the kafka
topics. A consumer of topic pulls the data from kafka topic.
Producer decides in which topic partition data should be
stored, it can be based on round robin fashion simply to
balance the load among partitions or based on semantic

partition function (based on some key in the record). A Topic
is a category/feed name to which messages are published. All
the messages in the kafka are organized as a topics. If any
message published to the kafka, it should be published to
specific topic and if any messages to be read, it should be read
from the specific topic. Kafka topics are divided into multiple
partitions. This provides multiple consumers to read data
from a topic partitions parallelly. Each message in a partition
is assigned and identified by a unique offset. Consumers read
messages from a specific offset or they read from any valid
offset point they chose. Consumer group contains set of
consumer instances and consumer group subscribes to a
specific topic to read data from. Consumers read data in a
consumer group. Each consumer within a group read
exclusive partitions.

Fig. 2 shows the mapping of partitions to consumer group
instances.

3.2 Kafka Streams
Kafka Streams [12] client library is built on top of kafka
producer and consumer clients. It uses stream partitions and
stream tasks as a logical unit of parallelism. Stream partitions
are mapped to kafka topic partitions. Data record in the
stream is a message in kafka and key of the record determines
the partitioning of data in both kafka and kafka streams. Kafka
task is build using kafka consumer API. Same partitions to
consumers mapping applies to kafka task instances in the
kafka streams too. Each kafka stream runs with an application
ID that will act as the consumer group name in kafka.

3.3 Rule Engine
A rule based engine uses the predefined rules to infer some
knowledge from the facts. Rule based engines consists of three
main components:

1. Knowledge Base: contains set of rules and facts.
2. Working Memory: used to store the facts of current

system state.
3. Inference Engine: applies logical rules on the facts to

infer new facts.

3.3.1 Knowledge Base
Knowledge Base may be considered as a representation of

1,832

IJSER

International Journal of Scientific & Engineering Research, Volume 9, Issue 2, February-2018
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

logical thinking of an expert in the form of rules. The rules are
expressed as: IF (Condition) THEN (action) format. It can also
be expressed as LHS(rule) and RHS(action), where left hand
side contains the condition or rule and the right hand side
contains the action to be taken based on the condition/rules
satisfied.

3.3.2 Working Memory
The working memory stores the facts of current system state,
and is referred to as facts base. The facts which are inputs to
the rule engine and the facts derived from the rule engine are
kept in the working memory for the further inference and to
maintain the state of the rule engine. Initially working
memory is initialized with the facts of the rule base.

3.3.3 Inference Engine
A typical inference engine contains the pattern matcher,
conflict resolver and execution engine. Pattern matcher
matches the rule base with the working memory(facts). When
the rule is fully matched, a rule match is created with rule and
matched facts, and placed onto the Agenda. Agenda controls
the order of execution of the matches using conflict resolution
strategy.

4 ARCHITECTURE

In our Scalable Real Time Rule Engine (SRTRE) Model, we
propose an architecture to scale up rule engine performance
by distributing incoming data streams and applying inference
algorithms independently on each data stream. This goal
demands a requirement that the data streams should be
logically separated so that all data required for inference is
available at a single node. To solve this problem we require a
system which distributes the data logically (based on a record
key) to the processing nodes. Apache kafka provides the
above mentioned functionality. So we have chosen apache
kafka to act as the messaging platform to distribute the
data/records to the processing nodes in our model. Fig. 3
shows the overall architecture of our SRTRE Model.

Fig. 3. High Level Architecture of SRTRE Model

SRTRE Model consists of three modules.
1. Data Generators generate events/facts to kafka

cluster.
2. Messaging layer logically distributes the data to the

processing nodes for inference. Each processing node
has a rule engine running in it.

3. Rule Engine (Processing Node) receives its share of
stream of facts and matches them against rules and

takes the desired action.

5 IMPLEMENTATION

SRTRE Model uses Apache Kafka as a messaging platform to
distribute the data/facts among the processing nodes and
Apache Drools as a rule engine to process the facts and rules
generated by the clients on each processing node. In this
model, rules are written by the clients and facts are events
generated by the producers.

5.1 Data Generator
Data generator module generate a stream of events which are
referred to as facts in the rule engine. These events can be
anything like sensors sending a continuous stream of current
temperature in the area, patient health status, transactions
made by the bank customers etc. We have used kafka
producer to publish the generated events to the kafka topic.
This module contains one or more producers, each generating
and writing a stream of event data generated to a topic. Each
event record generated is in the form:

 Key, Value1, Value2, Value3, ...

 Each producer connects to any of the brokers in the kafka
cluster and will gain access to all the brokers in the kafka
cluster. Producer is responsible for choosing which topic
partition the fact record is to be assigned to. It is done
according to some semantic partition function (based on the
record key). This makes sure that each record with a particular
key reaches the same topic partition. So all the records with a
particular key will reach a fixed partition.

5.2 Message Broker
We have used Kafka Cluster as messaging system. It consists
of one or more brokers. Any fact record published to the kafka
is written to the topic partition and replicated for fault
tolerance in the kafka cluster. Kafka cluster uses
Zookeeper[13] for managing and coordinating kafka brokers.
Producers and Consumer are notified by the Zookeeper about
the presence of new Kafka broker or failure of kafka broker in
the kafka cluster. It maps topic partitions to the consumer
instances in the consumer group. Partitions are exclusively
mapped to the consumer instances in the consumer group, so
that records with particular key always reach the fixed
consumer instance in the consumer group.

1,833

IJSER

International Journal of Scientific & Engineering Research, Volume 9, Issue 2, February-2018
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

Fig. 4. Detailed Architecture of SRTRE Model

5.3 Rule Engine (Processing Node)
We have configured processing nodes with kafka stream
instance for receiving stream of fact records along with drools
rule engine. Drools is an object oriented rule engine written in
java. It is a forward and backward chaining based inferencing
rule engine. Every fact in drools is an object. Fact record
received by the consumer is parsed, a fact object is instantiated
with the parsed record and inserted into the drools. Inference
engine is brain of any rule engine. It matches the facts against
the rules to infer conclusion which result in action. Fig. 4
shows the detailed implementation of SRTRE Model.

6 ILLUSTRATING EXAMPLE

This section illustrates an implementation of SRTRE Model
with a variation of banking benchmark. The Banking
benchmark [14] contains three main classes AccountPeriod,
CashFlow and Account. Each AccountPeriod object contains
the starting and ending dates of accounting period, Account
object contains the information of one customer, CashFlow
object contains type of transaction CREDIT or DEBIT and
amount of transaction. This benchmark contains a data
generator and set of rules to calculate each customer’s balance.
Data generator produces large amount of data/facts that are
published to the messaging layer (Kafka cluster) in SRTRE
Model. The two rules used in our example are as follows:

KStream object is instantiated with key and value as string
data type. mapValue() function calls parse_insertData() on
record by record basis to parse and insert data into the
kieSession created in drools and to match the facts against the
rules and fires the action.

7 RESULTS

We have evaluated our model with banking benchmark with
two rules. In our first experiment, we have setup Kafka cluster
with two nodes; four partitions for the topic with replication
factor of two for each partition; two Kafka streaming instances
running on these nodes with two partitions being mapped to
one Kafka streaming instance. Each node is configured with
an Intel Core i5-4670 CPU @ 3.40GHz, 4 core and 16GB RAM.
Fig. 5 shows the performance result with the above
configuration.

Fig. 5. Performance evaluation of drools and SRTRE Model
using two nodes

We have evaluated our model with various configurations
for scalability with the data range from 5m - 40m records for
different cluster configurations of 2 nodes, 4 nodes and 6
nodes. For a cluster setup with 2 nodes, we configured 2
brokers, 2 partitions; 4 nodes, we configured 2 brokers, 4
partitions and 3 brokers, 6 partitions for 6 processing nodes. In
the above configurations, all the nodes are functional and
were used in processing. In Fig. 6 we have evaluated our

1,834

IJSER

International Journal of Scientific & Engineering Research, Volume 9, Issue 2, February-2018
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

model across varying number (afore mentioned) of
processing nodes and partitions. As seen from the graph in
Fig. 6, our model takes the least amount of time despite
increasing data sizes thus performing better than Drools.

Fig. 6. Performance evaluation of drools and SRTRE Model
with varying number of nodes (with console output).

The performance of system measured in Fig. 6 included
console outputs. On running the system without console
outputs, the performance improvement achieved is
summarised by Fig. 7. In the later case we have also measured
the system performance with 60M inputs.

Fig. 7. Performance evaluation of drools and SRTRE Model
with varying number of nodes (without console output).

Furthermore, we increased our data set ranging from 40m,
60m and 80m to emphasize very good scalability of our model.
For this, 2 different cluster configurations were used to depict
the scalability First, 6 brokers, 10 partitions for 5 nodes
configuration where each node consists of two processing
instances. Second, 6 brokers, 12 partitions for 6 nodes
configuration where each node of two processing node
instances. Fig. 8 shows that for large data sets (>40mn) our
system scales well. In this experiment, console output was
enabled.

Fig. 8. Performance evaluation of SRTRE Model with larger
data set.

In order to identify the main factor responsible for scalability
we evaluated our model by fixing the number of brokers and
varying no. of partitions and processing nodes. Each partition
is mapped to a single node. The partitions were varied from 2
partitions - 12 partitions with 2 fixed brokers cluster
configuration with data size of 60M. Fig. 9 shows that as we
increase the number of partitions, the time taken by our model
decreases rapidly. This behaviour is observed due to increased
scope of parallelism as we increase the partitions and the
processing nodes. This experiment was carried out without
enabling console output.

Fig. 9. Performance evaluation of SRTRE Model with fixed 2
brokers and varying partitions.

8 CONCLUSION AND FUTURE WORK

We have proposed a scalable and real-time model for Rule-
engine in which we exploit the distributed architecture of
Apache Kafka to distribute the records and Kafka Streams to
process the data using drools engine. In this model, an engine
can infer only with data available on the node where it is
running. This implies that inference on data with different
keys may not be possible until both the keys are mapped to
the same partition or partitions are mapped to the same Kafka
Stream processing node. In the future work we plan to focus
on the following improvements:

1,835

IJSER

International Journal of Scientific & Engineering Research, Volume 9, Issue 2, February-2018
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

1. Infer conclusions from all the processing nodes.
2. Add a persistent layer to store the facts and inference

made for the future analysis using one of the
distributed storage systems like Apache HBase,
Apache Kudu, etc.

ACKNOWLEDGMENT

We acknowledge the support of our institute for this work. We
would also like to extend our thanks to Basanta Sharma for
helping us out with proofreading. Finally, we would like to
dedicate this work to our Founder Chancellor, Bhagawan Sri
Sathya Sai Baba.

REFERENCES

[1] “Drools,” http://docs.jboss.org/drools/release/7.0.0.Final/drools-
docs/html_single.

[2] Xiu-li Ma, Hong-xia Wang, and Ling-yun Zhang, “Application of
drools in network fault management system [j],” Computer
Engineering and Design, vol. 8, pp. 015, 2009.

[3] Eduardo Mosqueira-Rey, Amparo Alonso-Betanzos, Bertha Guijarro-
Berdinas, David Alonso-Rios, and J Lago-Pineiro, “A snort-based
agent for a jade multi-agent intrusion detection system,”
International Journal of Intelligent Information and Database
Systems, vol. 3, no. 1, pp. 107–121, 2009.

[4] Charles L Forgy, “Rete: A fast algorithm for the many pattern-many
object pattern match problem,” Artificial intelligence, vol.19, no. 1,
pp. 17–37, 1982.

[5] Daniel P Miranker, TREAT: A new and efficient match algorithm for
AI production system, Morgan Kaufmann, 2014.

[6] Robert B Doorenbos, “Production matching for large learning
systems.,” Tech. Rep., Carnegie-Mellon University Pittsburgh, PA,
Department of Computer Science, 1995.

[7] Ian Wright and James A. R. Marshall, “The execution kernel of rc++:
Rete*, a faster rete with treat as a special case,” Int.J. Intell. Games &
Simulation, vol. 2, no. 1, pp. 36–48, 2003.

[8] Jeong A Kang and Albert Mo Kim Cheng, “Shortening matching time
in ops5 production systems,” IEEE Transactions on Software
Engineering, vol. 30, no. 7, pp. 448–457, 2004.

[9] Jinghan Wang, Rui Zhou, Jing Li, and Guowei Wang, “A distributed
rule engine based on message-passing model to deal with big data,”
Lecture Notes on Software Engineering, vol. 2, no. 3, pp. 275, 2014.

[10] “Apache Kafka,”https://kafka.apache.org/.
[11] Kreps J, Narkhede N, Rao J. Kafka: A distributed messaging system

for log processing. InProceedings of the NetDB 2011 Jun 12 (pp. 1-7).
[12] “Kafkastreams,”https://kafka.apache.org/0110/documentation/stre

ams.
[13] “Zookeeper,”https://zookeeper.apache.org/doc/trunk/zookeeperO

ver.html.
[14] “Banking benchmark,” https://github.com/codehaus/rulessandpit.

1,836

IJSER

